

Prioritized Prime Implicant Patterns Puzzle for
Novel Logic Synthesis and Optimization

Kuo-Hsing Cheng* and Shun-Wen Cheng

Department of Electrical Engineering, Tamkang University, TAIWAN
E-mail: cheng@ee.tku.edu.tw*

Abstract

Compare CMOS Logic with Pass-Transistor Logic,
a question was raised in our mind: “Does any rule exist
that contains all good?” This paper reveals novel logic
synthesis and optimization procedures for full swing
arbitrary logic function. The novel procedures are called
Prioritized Prime Implicant Patterns Puzzle (PPIPP).
Following the proposed procedures, we can get a new
hybrid high performance logic circuit family, which has
low power consumption, low power-delay product, area
efficiency and suitable for low supply voltage. It has full
swing signal in all nodes and high robustness against
transistor downsizing and voltage scaling.

Index Term – Low power design, full-swing logic, hybrid
logic, prime implicant, VLSI design.

1. Introduction

On logic circuit design level, a proper choice of a
circuit style for implementing combinational logic is an
important issue. For example, in the NOR gate
implementation, as shown in Fig. 1, the static CMOS logic
circuit structure seems the better logic circuit family than
the DVL [5], DPL [7] or any other logic circuit families.

But when it comes to 2-input XOR logic
implementation, as shown in Fig. 1, the static CMOS logic
circuit family becomes the worst choice. This result may
confuse someone in logic circuit family selecting.

In general, the static CMOS logic circuit structure
can be seem as a special case of pass transistor logic
network that the pass variables input signals are just “1”
and “0”, and the input signals xi and iX are connected to
drive the gate of the MOS transistor as shown in Fig. 1(a).

And shown in Fig. 1(b), the input signals xi and iX
can be used as the control variables or pass variables of
the pass-transistor network. The control variables are
connected to drive the gate of the MOS transistors. The
pass variables are connected to the sources/drains of the
MOS transistors.

F

X i

F

X i

X jF

X i

F

X i

X j

A

B B

B

A A

B

A A B

A

B
F = A xo r B F = A + B

6 P + 6 N 2 P + 2 N

B BA A

(a). CMOS Logic Structure Style.

X i X i

F

X j

F

X i

X jF

X i

X j

B

A

B

A

B

B

F = A xo r B

B

B

A

B

F = A + B

4 P + 4 N 3 P + 4 N

B BA A

 (b) Full Swing Pass-Transistor Logic Style.

Fig. 1. Compare CMOS with PTL, a question was raised
in our mind: “Does any rule exist that contains all good?”

This paper is organized as follows. In Section 2, we
show the fundamental circling concepts, as the
background of the proposed method. Then in Section 3,
the proposed method is shown and demonstrated by
examples. In Section 4, process some comparison. Finally
conclude the major findings and outline the future work.

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

2. Basic Circling Concepts
The ideas are based upon the pass transistor logic

circuit implementation. As shown in Fig. 3, we use 2-input
XOR function as a circuit implementation example. The
detail design flow of the circuit will be shown in the
following. In order to describe the basic raw circling
procedures clearly, some basic notations and circuit
implementation procedures [3] -- Square, Modified K-map,
Loop Circling, Selected Set, Implicate Loop and Circuit
Implementation Methods are shown as the following:

2.1. Square
The Karnaugh map (K-map) of a function specifies

the value of the function for every combination of values
of the independent variables. The Square indicates a
function output state on the K-map. As shown in Fig. 2(a),
the output state of the Square for {A=B=0}, plotted in the
upper left on the K-map, is “1”.

2.2. Modified Karnaugh map (K-map)
The Modified K-map is almost the same with the K-

map, except that not only the power lines (“1”and “0”) but
also the input variables (“Xi” and “ iX ”) are listed in the
Square to represent the function result as shown in Fig.
2(b). It is straightforward to implement the circuit based
on the Static CMOS Logic according to the K-map. And
the Modified K-map provides us the thoughts of
implementation of the new logic synthesis and
optimization procedures.

2.3. Loop Circling
The Loop Circling is the method to implement the

PTL circuit. A loop contains one or more squares on the
Modified K-map. For example, the Square {A=B=0} and
Square {A=1, B=0} combine to form the Loop (i) by
looping the corresponding A’s on the Modified K-map in
Fig. 3(a). A loop may contains all squares that are never
selected by other loops (Loop(iii) in Fig. 3(a)), or part
squares are selected by other loop (Square {A=B=0} in
Loop(ii) in Fig. 3(a) is selected by Loop(i)).

2.4. Selected Set
We define a set of controlling and passing variables

that ever used for circuit implementation, call Selected Set.
Which means we can choose the variables in the Selected
Set for implementing new circuit without extra inverters to
generate the newly complementary signals. The initial
values in the Selected Set are {0, 1, Xi}. For example, the
initial variable in the Selected Set is {0, 1, A, B} in Fig.
3(a). After every loop circling, we put the new selected
passing and controlling variables in the Selected Set
immediately. For example, the Selected Set is {0,1,A,
B, B } after Loop (i) is circled. The select of variables in
the Selected Set to implement new circuit is based on the
choosing priority “0”>”1”>”Xi”>” iX ” (in the Selected Set)
>” iX ” (not in the Selected Set).

B
A

A
B

Ã Ä

Ã

Ä

Ä

Ã Ä
A A

B

B

A

B

A
B

Ã Ä

Ã

Ä

Ä

Ã Ä

» ô ¼ » õ ¼

Ä
Ä

Fig. 2. (a) The K-map of the XOR Function
(b) The Modified K-map of the XOR Function.

A
B

Ã Ä

Ã

Ä

Ã Ä

ÃÄ
A A

B

B

A

B

A
B

ß��� »ü¼

ß��� »üüü¼ß��� »üü¼

ß��� »ü¼

ß��� »üü¼

ß��� »üüü¼

Ô

Ù

Ù

Õ

Ô

Ù

Õ

Õ

Ô

Õ

Ô

Õ

Ô

Ù

Õ

Ô

Õ

» ô ¼

» õ ¼

Õ

Fig. 3. (a), (b) The original circling procedures of
the 2-input XOR Modified K-map.

2.5. Implicate Loop
An Implicate Loop may include partial or all squares

that are already chosen by a selected Loop. For example
as in Fig. 3(a), the Loop (ii) can be seen as a Implicate
Loop to the Loop (i), cause the Square {A=0, B=0} is
circled again. And due to the Loop (iii) (the Square{A=1,
B=1}) is not circled by any other selected loops, so it is a
Non-Implicate Loop.

2.6. Circuit Implementation Methods
 For pass transistor circuit implementation, we will

only concern those squares are newly choose in the
current loop. If a loop contains newly outputs states has
both 1’s and 0’s (Loop (i) in Fig. 3(b)), its pass-transistor
circuit switch is implemented by both NMOS and PMOS
(a transmission gate is used). The PMOS is used to
implement all 1’s loop (Loop (ii) in Fig. 3(b), the A=0,
B=1 Square is only concerned) and the NMOS is used to
implement all 0’s loop (Loop (iii) in Fig. 3(b)).

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

3. The Prioritized Prime Implicant Patterns
Puzzle (PPIPP)

Thus, it is possible to develop a synthesis and
optimization procedure of the pass transistor logic circuit
for arbitrary logic function and high performance
applications. Originally circling procedures are restricted
by K-map, only works under four variables [3]. And the
circles are difficulty to pin down. So the paper improve
the previously work then proposed the Prioritized Prime
Implicant Patterns Puzzle (PPIPP). It clearly handles the
higher variables problem.

The priorities of prime implicant patterns are
constructed by electrical characteristics, as shown in the
previous section, ex. NMOS logic is better than PMOS,
and the fewer input/control signals, the higher priority the
prime implicant. In Fig. 4, it just briefly shows some
template patterns. The priority order is priority 1>2>…>8.
The proposed PPIPP arrange the prime implicant priority
following the physical consideration, so it is superior to
any other symbolic logic optimization and/or logic
minimization methods.

F

X i

0 0

00
00

00
00

0000

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0

0

1

A

B

0

1

0 1

0
0

A

B

0

1

0 1

F

X i

1 1

11
11

11
11

1111

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0

0

1

A

B

0

1

0 1

1
1

A

B

0

1

0 1

1 1 1 1

1 1 1 1

1
1

1
1

1 1

F

X i

0

A

B

0

1

0 1

0

A

B

0

1

0 1

X j

0
0

00

00

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0

0

1

0
0

00

00

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0

0

1

1
1

1
1

1 1
1 1

1 1
1 1

0

F

X i

1

A

B

0

1

0 1

X j

0
0

00

00

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0

0

1

0
0

00

00

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0

0

1

F

X i

X j

0
0

00

00

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0

0

1

0

A

B

0

1

0 1

ps . 0 = good log ic -0 1 = good log ic -1

0 1

A

B

0

1

0 1

0 = poor log ic -0 1 = poor log ic -1

0 1

10
10

00
11

1
00

1

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0

0

1

A

B

0

1

0 1

0
1

A

B

0

1

0 1

10
10

10 10

1 010

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0

0

1

X i X i

F

X j

0 1

1 0
1 0

00
11

1
00

1

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0

0

1

A

B

0

1

0 1

0
1

A

B

0

1

0 1

10
10

10 10

1 010

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

C

0 0 0 1 1 1 1 0

0

1

F

X i

X j

1
1

11

11

A

B

C

0 0 0 1 1 1 1 0

0

1

A

B

C

0 0 0 1 1 1 1 0

0

1

A

B

C

0 0 0 1 1 1 1 0
0

1

1

A

B

0

1

0 1

1 0

01
01

11
00

0
11

0

A

B

C

0 0 0 1 1 1 1 0

0

1

A

B

C

0 0 0 1 1 1 1 0

0

1

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

0

1

0 1

1
0

A

B

0

1

0 1

01
01

01 01

0 101

A

B

C

0 0 0 1 1 1 1 0

0

1

A

B

C

0 0 0 1 1 1 1 0

0

1

A

B

C

0 0 0 1 1 1 1 0
0

1

X i X i

F

X j

1 0

0 1
0 1

11
00

0
11

0

A

B

C

0 0 0 1 1 1 1 0

0

1

A

B

C

0 0 0 1 1 1 1 0

0

1

A

B

C

0 0 0 1 1 1 1 0
0

1

A

B

0

1

0 1

1
0

A

B

0

1

0 1

01
01

01 01

0 101

A

B

C

0 0 0 1 1 1 1 0

0

1

A

B

C

0 0 0 1 1 1 1 0

0

1

A

B

C

0 0 0 1 1 1 1 0
0

1

Fig. 4. The priorities of prime implicant patterns are constructed by electrical characteristics.

Priority 1 Priority 2 Priority 3 Priority 4 Priority 5

Priority 6 Priority 7 Priority 8

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

And notice the proposed PPIPP has no sneak path. It

is either not like a binary decision diagram (BDD) tree. In
Fig. 5, the priorities of rest other 3-input variable prime
implicant patterns are shown. Notice the prime implicant
patterns can be shown as in Fig. 6. If the proposed PPIPP
needs to process n-input (n>4) signal function, the K-map
is no more a limitation.

In Fig. 7, it processes 2-input NAND function then
gets pure CMOS logic style circuit. And in Fig. 8, it
processes 2-input XOR function then gets pass-transistor
logic style circuit.

From Fig. 7, Fig. 8 and Fig. 9, it reveals the proposed
PPIPP produce hybrid logic style circuit. It combines the
advantage of CMOS logic and pass-transistor logic. It has
full-swing signal in all nodes and high robustness against
transistor downsizing and voltage scaling.

In the proposed PPIPP method, many prime implicant

patterns may need some memory space. As shown in Fig.
10, using bit field structures reduce to one-eighth-memory
space effectively.

4. Comparisons
Comparisons of the DVL, DPL, CMOS and new

logic family through 2-input XOR logic functions are
listed in Table.1. The comparisons are based on 0.35µm
CMOS technology and post layout simulation for supply
voltage at 1.5V. Possible transition combinations are
simulated, and the time taken of the worst-case signal
transition from input (50% level) to output (50% level)
worst-case gate delay is applied as delay value. Power-
delay product is calculated as a quality measure for power
efficiency.

F = A xo r B

0

1
0

0
1

0
1
1
0

0
0
1
1

0
1
0
1

A B P 1 FP 2 P 3

0

A

B

0

1

0 1

0 1

A

B

0

1

0 1

0
1

A

B

0

1

0 1

+ 1 0

A

B

0

1

0 1

0 1+ =

B

A

A

B

A A

B

P 1 u s e d v a r : { A , B }
P 1 & P 2 u s e d v a r : { A , B }
P 1 , P 2 & P 3 u s e d v a r : { A , B , A }

1

1
1
1
0

0
0
1
1

0
1
0
1

A B P 1 FP 2 P 3

1 1
1

0

A

B

0

1

0 1

1

A

B

0

1

0 1

0

A

B

0

1

0 1

+ 1 0

A

B

0

1

0 1

1 1+ =1 1
1

F = A B

A B

A

B

P1 used var : {A, B}
P1 & P2 used var : {A, B}
P1, P2 & P3 used var : {A, B}

P1 used va r : {A}
P1 & P2 used va r : {A, C}
P1 , P2 & P3 used va r : {A, C , B}
P1 , P2 , P3 & P4 used va r : {A, C , B}

B

1

1
1
1
1

0
0
1
1

0
1
0
1

C P 1 FP 2 P 3

0
0
1
1

0
1
0
1

0
0
0
0
1
1
1
1

A P 4

1
1

1

0

0

0
0

1

1

0
0
1
0

11
11

A

B

C

0 0 0 1 1 1 1 0

0

1

00

A

B

C

0 0 0 1 1 1 1 0

0

1

0
0

A

B

C

0 0 0 1 1 1 1 0

0

1

1 1

A

B

C

0 0 0 1 1 1 1 0

0

1

1 1

A

B

C

0 0 0 1 1 1 1 0

0

1 0
0

1 0
1
1

+

+

+

=

P1:

P2 :

P3 :

P4 :

F

B

C

A

C

F

A

B

F

F

A

F

A
B

C

A

C B

Fig. 7. 2-input NAND by PPIPP. Fig. 8. 2-input XOR by PPIPP. Fig. 9. Function F= CBA + by PPIPP.

� � ~ � � � � � � �______

} } ~ ~ } } } } ~ ~ ~

} ~ } ~ } ~ ~ } } ~

~ } } ~ } ~ ~ } } ~

~ ~ } } ~ ~ } ~ ~ } }

Fig. 6. 2-input Variables Prime Implicant Patterns’ Priority

Priority 9 Priority 10 Priority 11 Priority 12 Priority 13 Priority 14

Fig. 5. The priority of rest other 3-input variable prime implicant patterns.

F

X k

X i

X j

F

X k

X i

X j

F

X i

X j

X k

F

X k

X i X i

X j X j

F

X i

X j

X k

F

X k

X i X i

X j X j

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

Ã

Ä

Ã

Ã

Ã

Ã

Ä

Ã

Ä

Ã

Ä

Ã

Ã

Ä

Ã

Ä

Ä

Ã

Ã

Ä

Ã

Ã

Ã

Ã

Ã

Ä

Ä

Ã

Ã

Ã

Ã

Ä

bi t32

bi t1bi t8

Fig. 10. Using bit field structure to reduce the
memory requirement effectively.

B

A

B

A

B
F

B

A

B

F

B

B

A A

B

A

B

B

A

A

B

A

B

A

FF
B

A

A

B

A

B

A

(a) (b) (c) (d)

Fig. 11. Full swing 2-input XOR functions:
(a) The proposed logic style. (b) The DPL structure.
(c) The DVL structure. (b) The static CMOS structure.

Table.1. Various logical circuits comparison results of the
full swing 2-input XOR function.

Due to the pass transistor circuits using the passive
MOS switches to implement a given logic function, in
order to measure the average power dissipation of the
original circuit, some inverters are added in front of the
input of the original circuits. For a special 2-input XOR
function in Fig.11, the new circuit shown in Fig. 11(a) and
also proven in literature [8], has advantages over DVL,
DPL and static CMOS logic families in power, power-
delay product and area.

Hundreds of circuit experiments have ever been
processed and found it has the best performance in almost
all aspects.

5. Conclusions
In this paper, a novel logic circuit synthesis and
optimization procedure, Prioritized Prime Implicant
Patterns Puzzle (PPIPP), for arbitrary full swing logic
function is proposed. The new proposed logic family
proves to be superior to DVL, DPL and CMOS in all
aspects with only a few exceptions. The advantages of the
propose logic family are low power consumption, low
power-delay product and area efficiency. It can clearly
handle higher variables, is not limited by Karnaugh map.
It’s robustness against transistor downsizing and voltage
scaling makes it good for deep sub-micron VLSI usage.

6. Refferences
[1] P. Buch, A. Narayan, and A. R. Newton, A. Sangiovanni-

Vincentelli, “Logic synthesis for large pass transistor
circuits,” ICCAD, 1997, Page(s): 663 –670.

[2] A. P. Chandrakasan, S. Sheng and R. W. Brodersen, “Low-
power CMOS digital design”, IEEE Journal of Solid-State
Circuit, Volume: 27 Issue: 4, April 1992, Page(s): 473 –
484.

[3] Kuo-Hsing Cheng and Ven-Chieh Hsieh, “A new logic
synthesis and optimization procedure”, in Proc. IEEE Int.
Symp. on Circuits and Systems, 2001.

[4] Hanho Lee and Gerald E. Sobelman “New Low-Voltage
Circuit for XOR and XNOR,” Southeastcon ’97
Engineering New Century, Proceeding IEEE, 1997,
Page(s): 225-229.

[5] V. G. Oklobdzija, B. Duchene, “Pass-Transistor Dual
Value Logic For Low–Power CMOS,” Proceedings of the
1995 International Symposium on VLSI Technology, Taipei,
Taiwan, 1995.

[6] V. G. Oklobdzija, B. Duchene, “Development and
Synthesis Method for Pass-Transistor Logic Family for
High-Speed and Low Power CMOS,” Proceedings of the
38th Midwest Symposium on Volume: 1, 1996, Page(s):
298-301 VOL.1.

[7] M. Suzuki, N. Ohkubo, T. Shinbo, T. Yamanaka, et. al. “A
1.5 32-b CMOS ALU in Double PASS-Transistor Logic,”
IEEE J. Solid-State Circuits, vol. 28, no. 11, pp. 1145-
1151, November 1993.

[8] J. Wang, S. Fang and W. Feng, “New Efficient Designs for
XOR and XNOR Function on the Transistor Level,” IEEE
Journal of Solid-State Circuit, 29(7):780-786, July 1995.

[9] K. Yano; Y. Sasaki; K. Rikino and K. Seki, “Top-down
pass-transistor logic design,” IEEE Journal of Solid-State
Circuit, Volume: 31 Issue: 6, June 1996, Page(s): 792 –803.

[10] R. Zimmermann and W. Fichtner, “Low-power logic styles:
CMOS versus pass-transistor logic,” IEEE Journal of
Solid-State Circuit, Volume: 32, Issue: 7, July 1997,
Page(s): 1079 –1090.

 Delay-time
(ns)

Power
(ôW)

Normalize
power-delay

product

Global size
of

transistors.
Fig. 11a 0.446 7.946 1.00 3P + 4N
Fig. 11b 0.366 11.35 1.17 4P + 4N
Fig. 11c 0.432 10.55 1.79 4P + 4N
Fig. 11d 0.643 15.05 2.72 6P + 6N

struct bitfield32 {
 minterm32 :1;
 minterm31 :1;
 minterm30 :1;
…….
 minterm02 :1;
 minterm01 :1;
} PI_unit;

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

